Fisiopatología de la sepsis por bacterias gram negativas: bases moleculares

Contenido principal del artículo

Autores

Yardani Rafael Méndez Fandiño
María Claudia Barrera C.

Resumen

La sepsis constituye un complejo síndrome en el que a consecuencia de una respuesta anómala del huésped frente a una infección se desencadenan una serie de mecanismos fi siopatológicos celulares y moleculares que se traducirán en el daño multiorgánico del paciente y su respectivas manifestaciones clínicas. Las bacterias gram negativas, gracias al lipopolisacárido (LPS), principal constituyente de su membrana externa son reconocidas por moléculas como la proteína de unión al lipopolisacàrido (LBP) y por complejos de receptores de membrana celular en el huésped que reconocen su estructura antigénica como son el TLR4, el CD14 y la MD2, dando lugar, por medio de diferentes vías de señalización mieloide dependiente (MyD88) y mieloide independiente o TRIF, a la activación de una serie de kinasas que fi nalmente a través de vías de señalización intracelular como NF – kB, generarán cambios transcripcionales que inducirán la producción de citocinas pro infl amatorias, que explican el Síndrome de respuesta inflamatoria sistémica (SIRS) y las antinfl amatorias, que explican el síndrome de repuesta anti infl amatorio compensatorio (CARS), ambos constituyen las fases de la sepsis a través de los cuales pasa el paciente séptico en diferentes momentos del proceso. Todos estos procesos fisiopatológicos moleculares de la sepsis son los que darán como resultado cambios en el endotelio, la microvasculatura, el sistema del complemento, la coagulación y finalmente en cada uno de los órganos del paciente las diferentes manifestaciones clínicas que desde scores de valoración del paciente, como el SOFA, permiten identificar al paciente en sepsis, su pronóstico y directrices acerca del tratamiento. Es así como la comprensión de las bases fisiopatológicas moleculares de las sepsis por gram negativos constituyen hoy en día la base para su definición, la comprensión de la clínica y el punto de partida para mejoras terapéuticas en el manejo de la sepsis, traducida en la supervivencia del paciente.

Palabras clave:

Detalles del artículo

Licencia

Derechos de autor 2015 Revista Cuarzo

Política de acceso abierto

Esta revista proporciona un acceso abierto a su contenido, teniendo en cuenta el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global del conocimiento y no se hace responsable de los contenidos publicados.

Consideraciones éticas 

En sus publicaciones la REC contempla las políticas relacionadas con aspectos éticos que se encuentran en World Associationof Medical Editors (WAME)(http://www.wame.org/about/recommendations-on-publication-ethics-policie)

Política sobre derechos de autor

Los autores que publican en la revista se acogen al código de licencia creative commons 4.0 de atribución no comercial sin derivados y compartir igual.

Referencias

Singer M, Deutschman C, Warren C, Shankar-Hari M, Annane D,Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 801-810.

Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis A brief review. Virulence. 2014; 5(1): 213–218.

Rabirad N, Mohammadpoor M, Lari AR, Shojaie A, Bayat R, et al. Antimicrobial susceptibility patterns of the gram-negative bacteria isolated from septicemia in Children’s Medical Center, Tehran, Iran. J Prev Med Hyg. 2014;55(1):23-6.

Pérez M, Sánchez J.J. Actualización de la Sepsis en Adultos. Código Sepsis [Internet]. Universidad Internacional de Andalucía. [20 Mayo 2016] 2014. Disponible en: http://dspace.unia.es/bitstream/handle/10334/3418/0607_P%C3%A9rez.pdf?sequence=3

Mak T, Brüggemann H. Vimentin in Bacterial Infections. Cells. 2016;5(2):1-8.

Do Vale A, Cabanes D, Sousa. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Frontiers in Microbiology. 2016;7(42):1-21.

Adams P, Lamoureux L, Swingle L, Mukundan K, Montan G. Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks. Biophysical Journal. 2014;106:2395–2407.

Steimle A, Autenrieth I, Frick J.S. Structure and function: Lipid A modifications in commensals and pathogens. Int. J. Med. Microbiol. 2016; 306(5):290-301.

Harm S, Gabor F, Hartmann J. Low-dose polymyxin: an option for therapy of Gram-negative sepsis. Innate Immunity. 2016;22(4):274–283.

Band V, Weiss D. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria. Antibiotics. 2015;4:18-41.

Carrillo R.C, Tapia J, Peña C.A, Kim Kohd M.J, Jaime A.R, Montalvo E. Bases moleculares de la sepsis. Revista de la Facultad de Medicina de la UNAM. 2014;57(3):1-13.

Castillo-Juárez I, Maeda T, Mandujano-Tinoco E, Tomás M, Pérez- Eretza B, García-Contreras S.J, et al. Role of quorum sensing in bacterial infections. World J Clin Cases. 2015;3(7):575-598.

March Rossello´ a G.A, Eiros Bouza J.M. Quorum sensing en bacterias y levaduras. Med Clin (Barc). 2013;141(8):353–357.

Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. Perspectives in Medicinal Chemistry 2016;8:1-15.

Prieto A, Urcola I, Blanco J, Dahbi G, Muniesa M, Quirós P, et al. Tracking bacterial virulence: global modulators as indicators. Scientifi c Reports. 2016;6(25973):1-11.

Yamamoto H, Oda M, Kanno M, Tamashiro S, Tamura I, Yoneda T, et al. Chemical Hybridization of Vizantin and Lipid A to Generate a Novel LPS Antagonist. Chem. Pharm. Bull. 2016;64:246–257.

Oda M, Yamamoto H, Shibutani M, Nakano M, Yabiku K, Tarui T, et al. Vizantin Inhibits Endotoxin-Mediated Immune Responses via the TLR 4/MD-2 Complex. J Immunol. 2014;193:4507-4514.

Martinez de Tejada G, Heinbockel L, Ferrer-Espada R, Heine H, Alexander C, Bárcena-Varela S, et al. Lipoproteins/peptides are sepsisinducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Scientifi c Reports. 2015;5(14292):1-15.

Chang Y, Tsai M, Huey-Herng Sheu W, Hsieh S, Chiang A. The Therapeutic Potential and Mechanisms of Action of Quercetin in Relation to Lipopolysaccharide-Induced Sepsis In Vitro and In Vivo. PLOS ONE. November 2013;8(11):1-13.

Takashima K, Matsushima M, Hashimoto K, Nose H, Sato M, Hashimoto N, et al. Protective effects of intratracheally administered quercetin on lipopolysaccharide-induced acute lung injury. Takashima et al. Respiratory Research 2014;15(150):1-10.

Chen K.F, Chaou C.H, Jiang J.Y, Yu H.W, Meng Y.H, Tang W.C, et al. Diagnostic Accuracy of Lipopolysaccharide-Binding Protein as Biomarker for Sepsis inAdult Patients: A Systematic Review and Meta-Analysis. PLOS ONE. 2016;11(4):1-13.

Krasity B, Troll J, Lehnert E, Hackett K, Dillard J, Apicella M, et al. Structural and Functional Features of a Developmentally Regulated Lipopolysaccharide-Binding Protein. mBio. 2015;6(5):1-10.

Dupont A, Heinbockel L, Brandenburg K, Hornef M. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes Deecember 2014;5(6):761-765.

Fang L, Xu Z, Wang G.S, Ji F, Mei C, Liu J, et al. Directed Evolution of an LBP/CD14 Inhibitory Peptide and Its Anti-Endotoxin Activity. PLoS One. 2014;9(7):1-10.

Płóciennikowska A, Hromada-Judycka A, Borzecka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPSinduced pro-infl ammatory signaling. Cell. Mol. Life Sci. 2015;72:557–581.

Yang H, Wang H, Ju Z, Ragab A.A, Lundbäck P, Long W. MD-2 is required for disulfi de HMGB1– dependent TLR4 signaling. J Exp Med. 2015;212(1):5-14

Wang H, Wei Y, Zeng Y, Qin Y, Xiong B, Qin G, et al. The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population. BMC Med Genet. 2014;15(123):1-9.

Mukherjee S, Karmakar S, Sinha Babu S.P. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. braz j infect dis. 2016; 20(2):193–204.

Paramo T, Tomasio S.M, Irvine K.L, Bryant C.E, Bond P.J. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Sci Rep. 2015;5(17997):1-13.

Zhang S, Yu M, Guo Q, Li1 R, Li G, Tan S, et al. Annexin A2 binds to endosomes and negatively regulates TLR4- triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep. 2015;5(15859):1-15.

Tsirigotis P, Chondropoulos S, Gkirkas K, Meletiadis J, Dimopoulou I. Balanced control of both hyper and ypo-infl ammatoryphases as a new treatment paradigm in sepsis. J Thorac Dis. 2016;8(5):E312-E316.

Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?. Virulence. 2014;5(1):45-56.

Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa M.A, Elder G, Bozdagi O, et al. A Critical Role for Human Caspase-4 in Endotoxin Sensitivity. J Immunol. 2014;193(1):335-43.

Smith C, Wang X, Yin H. Caspases come together over LPS. Trends Immunol. 2015;36(2):59–61.

Aziz , Jacob A, Wang P. Revisiting caspases in sepsis. Cell Death Dis. 2014;20(5):1-12.

Jorgensen I, Miao E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–142.

Wiersinga W.J, Leopold S.J, Cranendonk D.R, Van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.

ManS.M, Kanneganti T.D. Regulation of infl ammasome activation. Immunol Rev. 2015;265(1):6–21.

Suárez R, Buelvas N. El infl amosoma: mecanismos de activación. Invest Clin. 2015;56(1):74 – 99.

Gómez H.G, Rugeles M.T, Jaimes F.A. Características inmunológicas claves en la fi siopatología de la sepsis Infectio. 2015;19(1):40-46.

Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93:1-9.

Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18(3):257-68.

Lee SA, Kwak MS, Kim S, Shin JS. The role of high mobility group box 1 in innate immunity. Yonsei Med J. 2014;55(5):1165-76.

Luo L, Zhang S, Wang Y, Rahman M, Syk I, Zhang E, Thorlacius H. Proinfl ammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L586-96.

Zhang J, Yang J, Xu X, Liang L, Sun H, Liu G, et al. The influence of genetic polymorphisms in TLR4 and TIRAP, and their expression levels in peripheral blood, on susceptibility to sepsis. Exp Ther Med. 2016;11(1):131-139.

Bataille A, Galichon P, Ziliotis MJ, Sadia I, Hertig A. Epigenetic changes during sepsis: on your marks!. Crit Care. 2015;19(358):1-3.

Arens C, Bajwa SA, Koch C, Siegler BH, Schneck E, Hecker A, et al. Sepsis-induced long-term immuneparalysis - results of adescriptive, explorative study. Crit Care. 2016;20(93)1-11

Schulte W1, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Infl amm. 2013;2013(165974):1-16.

Yan J, Li S, Li S. The role of the liver in sepsis. . Int Rev Immunol. 2014;33(6):498-510.

Minemura M, Tajiri K, Shimizu Y. Liver involvement in systemic infection. World J Hepatol. 2014;6(9):632-42.

Sônego F, Castanheira FV, Ferreira RG, Kanashiro A, Leite CA, Nascimento DC, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol. 2016;7(155):1-7.

Allen KS, Sawheny E, Kinasewitz GT. Anticoagulant modulation of inflammation in severe sepsis. World J Crit Care Med. 2015 May 4;4(2):105-15.

Lupu F, Keshari RS, Lambris JD, Coggeshall KM. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res. 2014;133(01):S28-31.

Charchafl ieh J, Rushbrook J, Worah S, Zhang M. Activated Complement Factors as Disease Markers for Sepsis. Dis Markers. 2015;2015(382463):1-9.

Descargas

La descarga de datos todavía no está disponible.